Features of C/C Composite Products

C/C composite (Carbon Fiber Reinforced Carbon Composite) is a carbon-carbon composite material reinforced by high strength carbon fiber, which has superior properties such as light weight, high mechanical strength, and high elasticity. Because of their unique features, our C/C composites (CX series) are used in a wide range of fields such as electronics, environment and energy, general industrial furnaces, and automobiles and other means of transport.

- **High mechanical strength, high elasticity, and high toughness**
 C/C composites have higher strength, higher elasticity, and resistance to cracking and chipping, compared to isotropic graphite materials. C/C composites can be used with assurance, as the fractures do not propagate rapidly in them.

- **Ultra heat resistance**
 C/C composites have higher strength at high temperatures compared to metallic materials. They can be used even at ultra-high temperatures of 2000°C or higher in inert atmospheres.

- **Light-weight and easy to handle**
 C/C composites have low density compared to metallic materials, and therefore, make light weight designing possible.

- **High thermal conductivity**
 A thermal conductivity higher than copper has been achieved (in CX-2002) through the use of carbon structure control technology, which involves our superior chemical vapor infiltration (CVI) treatment.
Manufacturing Process

Forming
- FW forming
- Hot pressing
- Hot rolling

Processing
- Baking
- Impregnation
- Graphitizing

Post-Processing
- Inspection
- Finish Machining
- Material Shipment
- Surface treatment
- Scrubber
- Halogen Gas
- Exhaust Gas
- Purification
- Shipment
- Inspection

No information in this catalog may be used or reproduced without the prior consent of Toyo Tanso.
Application

- **Electronics**
 - For production of single crystal silicon

- **Environment and Energy**
 - For production of silicon for solar cells
 - For nuclear energy plants

- **Automobiles, other means of transport, etc**
 - For sliding components

※Photographs provided by the Japan Atomic Energy Agency

No information in this catalog may be used or reproduced without the prior consent of Toyo Tanso.
General industrial furnaces

- For heat treatment furnaces

- Base tray (Grid)

- Heat treatment furnace

- Basket

- Multi-layer tray

- Mesh tray

- Wavy tray

- Internal driving parts of furnaces

- Heaters

- Nuts and bolts

- Spring

- Protective cover for thermal insulation

- For hot press furnaces

- Rods

- Die
Property Data

Typical properties

<table>
<thead>
<tr>
<th>Shape</th>
<th>Material</th>
<th>Bulk Dens. (g/ml)</th>
<th>Electrical Resistivity (×10^12 Ω·cm)</th>
<th>Thermal Expansion (β)</th>
<th>Pencil hardness (HB)</th>
<th>Tensile strength (MPa)</th>
<th>Tensile elongation (%)</th>
<th>Coefficient of Thermal Expansion (α)</th>
<th>Thermal Conductivity (W/m·K)</th>
<th>C/C type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat plate</td>
<td>CX-741</td>
<td>1.51</td>
<td>23</td>
<td>140</td>
<td>45</td>
<td>185</td>
<td>8.1</td>
<td><1</td>
<td>8</td>
<td>35</td>
<td>Medium strength (Molding method A)</td>
</tr>
<tr>
<td></td>
<td>CX-761</td>
<td>1.58</td>
<td>20</td>
<td>185</td>
<td>55</td>
<td>250</td>
<td>8.4</td>
<td><1</td>
<td>9</td>
<td>44</td>
<td>High strength (Molding method A)</td>
</tr>
<tr>
<td></td>
<td>CX-742</td>
<td>1.48</td>
<td>24</td>
<td>130</td>
<td>42</td>
<td>170</td>
<td>7.8</td>
<td><1</td>
<td>5</td>
<td>34</td>
<td>High strength (Molding method B)</td>
</tr>
<tr>
<td></td>
<td>CX-752</td>
<td>1.58</td>
<td>21</td>
<td>170</td>
<td>90</td>
<td>185</td>
<td>8.2</td>
<td><1</td>
<td>8</td>
<td>42</td>
<td>High strength (Molding method B)</td>
</tr>
<tr>
<td></td>
<td>CX-31</td>
<td>1.61</td>
<td>22</td>
<td>80</td>
<td>23</td>
<td>88</td>
<td>4.1</td>
<td><1</td>
<td>12</td>
<td>52</td>
<td>Not used for bolts and components</td>
</tr>
<tr>
<td></td>
<td>C/C-2011</td>
<td>1.50</td>
<td>30</td>
<td>147</td>
<td>47</td>
<td>127</td>
<td>8.2</td>
<td><1</td>
<td>5</td>
<td>20</td>
<td>Medium strength (nut and bolt components)</td>
</tr>
<tr>
<td></td>
<td>C/C-5011</td>
<td>1.50</td>
<td>29</td>
<td>216</td>
<td>50</td>
<td>147</td>
<td>-</td>
<td><1</td>
<td>5</td>
<td>20</td>
<td>Medium strength (nut and bolt components)</td>
</tr>
<tr>
<td>Profiles</td>
<td>CX-743</td>
<td>1.48</td>
<td>24</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>7.8</td>
<td><1</td>
<td>5</td>
<td>34</td>
<td>Profiles</td>
</tr>
<tr>
<td></td>
<td>CX-763</td>
<td>1.58</td>
<td>21</td>
<td>170</td>
<td>-</td>
<td>-</td>
<td>8.2</td>
<td><1</td>
<td>8</td>
<td>42</td>
<td>Profiles with high strength</td>
</tr>
<tr>
<td>Cylinder</td>
<td>CX-45</td>
<td>1.44</td>
<td>24</td>
<td>105</td>
<td>34</td>
<td>114</td>
<td>8</td>
<td><1</td>
<td>4</td>
<td>34</td>
<td>Medium strength cylinder</td>
</tr>
<tr>
<td></td>
<td>CX-47</td>
<td>1.52</td>
<td>23</td>
<td>140</td>
<td>45</td>
<td>154</td>
<td>8</td>
<td><1</td>
<td>6</td>
<td>35</td>
<td>High strength cylinder</td>
</tr>
<tr>
<td>Crucible</td>
<td>CX-510V</td>
<td>1.57</td>
<td>13</td>
<td>185</td>
<td>-</td>
<td>-</td>
<td>280</td>
<td>7</td>
<td><1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C/C-FW1</td>
<td>1.50</td>
<td>12</td>
<td>245</td>
<td>-</td>
<td>-</td>
<td>245</td>
<td>-</td>
<td><1</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C/C-55</td>
<td>1.10</td>
<td>16</td>
<td>195</td>
<td>-</td>
<td>-</td>
<td>280</td>
<td>7.4</td>
<td><1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Tiles</td>
<td>CX-200D2</td>
<td>1.68</td>
<td>12</td>
<td>245</td>
<td>43</td>
<td>47</td>
<td>147</td>
<td>47</td>
<td>3.0</td>
<td>147</td>
<td>147</td>
</tr>
</tbody>
</table>

*The figures above are typical values, and are not guaranteed.

1) Manufactured by Ohawa Carbon Industrial Co., Ltd.
2) The direction of rotation of the left is designated as the X-axis and the directions within the plane as X- and Y-axes.

Available sizes

Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-741</td>
<td>1000×1500×8–30</td>
</tr>
<tr>
<td>CX-742</td>
<td>1000×1500×8–30</td>
</tr>
<tr>
<td>CX-51</td>
<td>Max.850×1400 3.2–80</td>
</tr>
<tr>
<td>C/C-201</td>
<td>1020×700×12 700×720×12</td>
</tr>
<tr>
<td>C/C-501</td>
<td>Max.300×300×20</td>
</tr>
<tr>
<td>CX-45-CX-47</td>
<td>Inner diameter 300–1400, 1400L</td>
</tr>
</tbody>
</table>

Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-743</td>
<td>U-oriented 800×20×145×12×1000</td>
</tr>
<tr>
<td>CX-742</td>
<td>U-oriented 107×54×8×1000</td>
</tr>
<tr>
<td>CX-510V</td>
<td>Max. inner diameter 188×48 crucibles available</td>
</tr>
<tr>
<td>C/C-FW1</td>
<td>Max.950×800×20–1500</td>
</tr>
<tr>
<td>C/C-55</td>
<td>Inner diameter 10–1400, 1400L</td>
</tr>
<tr>
<td>CX-2002U</td>
<td>40×150×80 (X×Y×Z)</td>
</tr>
</tbody>
</table>

Element

<table>
<thead>
<tr>
<th>Element</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td><0.07</td>
<td><0.02</td>
<td><0.08</td>
<td><0.1</td>
<td><0.04</td>
<td><0.08</td>
<td><0.07</td>
<td><0.07</td>
<td><0.04</td>
<td><0.1</td>
<td><0.08</td>
</tr>
</tbody>
</table>

Method of measurement

AAS, ICP-AES, ICP-AES, AAS, ICP-AES, AAS, ICP-AES, ICP-AES, ICP-AES, ICP-AES, ICP-AES

*The figures above are examples of measured values and are not guaranteed.

*ICP-AES: Inductively coupled plasma atomic emission spectroscopy, AAS: Atomic absorption spectrometry

*CX-510V is a high purity material

An example of impurity analysis of CX-510V

(A high purity treated product)

Unit mass ppm

Different surface treatments

Advantageous properties are imparted by using Toyo Tanso’s proprietary surface treatment technologies,

Details of surface treatments and their effects

- **CVD treatment (Glasstix Kote®)**
 - Improves oxidation resistance, and prevents dust formation.

- **CVD treatment**
 - Improves oxidation resistance, and prevents dust formation.

- **Thermal protection**
 - Improves resistance against SiO gas.

- **CVD treatment**
 - Improves oxidation resistance, and prevents dust formation.

- **G CVD treatment**
 - Improves oxidation resistance, and prevents dust formation.

- **Oxidation loss (%)**
 - untreated: 9, CVD treatment: 5

- **Reactivity with SiO gas (%)**
 - untreated: 30, CVD treatment: 20

*Abbreviation for Chemical Vapor Infiltration
Flexural strength

- CX-781
- CX-31
- Isotropic graphite

Tensile strength

- CX-781
- CX-31
- Isotropic graphite

Strength of screw thread

- Load (kN)
- Screw size (M4, M6, M8, M10, M12, M16, M18, M20)

Electrical resistivity

- CX-781
- CX-31
- Isotropic graphite

Linear thermal expansion coefficient

- Thermal expansion coefficient (%)

Specific heat

- Specific heat (J/kg K)

Thermal conductivity (⊥)

- Coefficient of thermal conductivity (W/m K)

Thermal conductivity (∥)

- Coefficient of thermal conductivity (W/m K)

1) Our product: Large-sized isotropic graphite material. IG-56
2) Our product: High strength isotropic graphite material. ISG-68
Examples of Designing C/C Composite Products

We select suitable materials and design products according to customer's use conditions and requirements.

- **Hot press mold**
 - **Features**
 1. The device can be made smaller, and the cost of installing the facility reduced.
 2. Large-sized sintered bodies can be made, which improves productivity.
 3. Heat capacity is less, which can reduce energy costs.

- **Designing**
 <Design example> Molding pressure: 30MPa; Job diameter: 200mm; Height: 250mm

<table>
<thead>
<tr>
<th>Parts</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C die</td>
<td>C/C-FW</td>
</tr>
<tr>
<td>Outer sleeve with die</td>
<td>C/C-FW01</td>
</tr>
<tr>
<td>Two-piece inner sleeve</td>
<td>D=70</td>
</tr>
<tr>
<td>C/C spacer</td>
<td>C/C-201</td>
</tr>
<tr>
<td>Upper punch</td>
<td>860×86</td>
</tr>
<tr>
<td>Receiver groove</td>
<td>D=70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Die outer diameter</th>
<th>Die weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C-FW die</td>
<td>245MPa</td>
<td>φ 340</td>
</tr>
<tr>
<td>Carbon die</td>
<td>31MPa</td>
<td>φ 520</td>
</tr>
</tbody>
</table>

The tensile strength of the C/C composite is higher than ordinary carbon, which permits a small die outer diameter to be used. This enables the designing of compact equipment.

Manufacturer: Ohwada Carbon Industrial Co., Ltd.

- **Heat treatment tray**
 - **Features**
 1. Light weight:
 - The density is one fifth of iron and it is easy to handle.
 - Weight comparison example: A 900×600×40 tray made of iron weighs about 85kg, whereas one made of C/C composite would weigh about one tenth as much, i.e., 8.5kg.
 - (In this calculation, the thickness of the iron tray was kept at twice that of the C/C tray, taking the high temperature strength into account.)
 2. High mechanical strength:
 - About 10 times that of iron at 1000°C
 3. Ultra heat resistant:
 - The strength is not reduced, and there is no deformation, even at 2000°C in non-oxidizing atmospheres.
 4. Energy saving and environment-friendly:
 - The electricity needs for heating the tray is about a quarter of what is needed for the iron tray.
 5. Maintenance-free:
 - No repairs are needed as there is no deformation.

- **Designing**